How to find vertex from 2 x intercepts

Home Math Algebra Linear EquationsHow to Find the Vertex of a Parabola Equation Wojciech Gajda/iStock/Getty ImagesShareTweetEmailPrintRelatedInteresting Facts About the History of

How to find vertex from 2 x intercepts
  • Home
  • Math
  • Algebra
  • Linear Equations

How to Find the Vertex of a Parabola Equation

Kicked or thrown objects form a parabola in the air.

Wojciech Gajda/iStock/Getty ImagesShareTweetEmailPrint

Interesting Facts About the History of Parabolas

Related

Interesting Facts About the History of ParabolasUpdated April 24, 2017By Marie Mulrooney

In the real world, parabolas describe the path of any thrown, kicked or fired object. They're also the shape used for satellite dishes, reflectors and the like, because they concentrate all rays that enter them into a single point inside the bell of the parabola, called the focus. In mathematical terms, a parabola is expressed by the equation f(x) = ax^2 + bx + c. Finding the midpoint between the parabola's two x-intercepts gives you the x-coordinate of the vertex, which you can then substitute into the equation to find the y-coordinate as well.

Use basic algebra to write the parabola's equation in the form f(x) = ax^2 + bx + c, if it is not in that form already.

Identify which numbers are represented by a, b and c in the parabola's equation. If b and c aren't present in the equation, it means they are equal to zero. The number represented by a, however, will never be equal to zero. For example, if your parabola's equation is f(x) = 2x^2 + 8x, then a = 2, b = 8 and c = 0.

To find the midpoint between the parabola's two x-intercepts, calculate -b/2a, or negative b divided by twice the value of a. This gives you the x-coordinate of the vertex. To continue the example above, the x-coordinate of the vertex would be -8/4, or -2.

Find the y-coordinate of the vertex by substituting the x-coordinate back into the original equation, then solving for f(x). Substituting x = -2 into the example equation would look like this: f(x) = 2(-2)^2 + 8(-2) = 2(-4) - 16 = 8 - 16 = -8. The solution, -8, is the y-coordinate. So the coordinates of the vertex for the example parabola are (-2, -8).

Things You'll Need

  • Pencil
  • Paper
  • Calculator (optional)

Tips

  • If you can put the parabola's equation into the form f(x) = a(x - h)^2 +k, also known as the vertex form, the numbers that take the place of h and k are the x- and y-coordinates, respectively, of the vertex. Keep in mind that if k is absent when the equation is in this format, k = 0. So if the equation is just f(x) = 2(x - 5)^2, the vertex coordinates are (5, 0). If the equation in vertex form is f(x) = 2(x - 5)^2 + 2, the coordinates of the vertex would be (5, 2).

Warnings

  • Pay close attention to negative signs when dealing with the x^2 term of the equation. Remember that when you square a negative number, the result is positive -- so x^2 on its own will always be positive. However the coefficient "a" may be positive or negative, so the ax^2 term as a whole may be either positive or negative.
Interesting Facts About the History of Parabolas
How to Calculate Half of a Parabolic Curve
How to Find X-Intercept & Y-Intercept
How to Convert an Equation Into Vertex Form
What Is the Difference Between Concave & Convex Mirrors?
How to Solve Hyperbolas
How to Find the Vertices of an Ellipse
How to Graph Parabolas on a TI-84 Calculator
How to Find the Slope of a Plotted Line With the TI-84...
How to Find Equation of a Parabola
How to Graph and Find the Solution on a Calculator
How to Find the X Intercept of a Function
How to Find the Y-Intercept of a Circle
Endpoint Math Formula
How to Find X & Y Intercepts on a Graphing Calculator
How to Create Linear Equations
How to Find the Cotangent on a Graphing Calculator
How to Find Equations of Tangent Lines
How to Find a Plane With 3 Points
How to Measure a Magnification Mirror

References

  • Math Matters at Iowa: Finding the Vertex of a Parabola
  • Math Is Fun: Parabola
  • Math Warehouse: Equation of a Parabola

Tips

  • If you can put the parabola's equation into the form f(x) = a(x - h)^2 +k, also known as the vertex form, the numbers that take the place of h and k are the x- and y-coordinates, respectively, of the vertex. Keep in mind that if k is absent when the equation is in this format, k = 0. So if the equation is just f(x) = 2(x - 5)^2, the vertex coordinates are (5, 0). If the equation in vertex form is f(x) = 2(x - 5)^2 + 2, the coordinates of the vertex would be (5, 2).

Warnings

  • Pay close attention to negative signs when dealing with the x^2 term of the equation. Remember that when you square a negative number, the result is positive -- so x^2 on its own will always be positive. However the coefficient "a" may be positive or negative, so the ax^2 term as a whole may be either positive or negative.

Photo Credits

Wojciech Gajda/iStock/Getty Images

Find Your Next Great Science Fair Project! GO

Video liên quan